CSE 451: Operating Systems
Winter 2013

Scheduling

Gary Kimura



Scheduling

In early lectures we talked about context switching
— an interrupt occurs (device completion, timer interrupt)
— athread causes an exception (a trap or a fault)

We glossed over the choice of which thread is
chosen to be run next
— “some thread from the ready queue”
This decision is called scheduling
» scheduling is policy
 context switching is mechanism
“Scheduling” occurs everywhere
— Threads/Processes, 10, memory, etc.



Mechanism vs Policy

Policy: a set of ideas or a plan of what to do.
Mechanism: a process, technique, or system for achieving a result.

Fundamental part of microkernel design
— Change policy and not affect mechanism (and vice versa)

Security
— Mechanism is authentication and access checks
— Policy is who gets access and when

Scheduling
— Mechanism is context switch
— Policy is selection of which thread to run next
Virtual memory
— Mechanism is page replacement
— Policy is which page to replace (local process vs all processes)
Hansen, Per Brinch (April 1970). "The nucleus of a Multiprogramming
System". Communications of the ACM 13 (4): 238-241.



Scheduling Goals

Keep the CPU(s) busy
Maximize throughput (“requests” per second)

Minimize latency
— Time between responses
— Time for entire “job”

Favor some particular class (foreground window,
Interactive vs CPU-bound)

Be fair (no starvation or inversion)
THESE CONFLICT



Classes of Schedulers

Batch
— Throughput / utilization oriented

— Example: audit inter-bank funds transfers each night, Pixar
rendering

Interactive

— Response time oriented

— Example: attu

Real time

— Deadline driven

— Example: embedded systems (cars, airplanes, etc.)
Parallel

— Speedup driven

— Example: “space-shared” use of a 1000-processor machine for
large simulations

Others...

We'll be talking primarily about interactive scheduers
(as does the text).



Multiple levels of scheduling decisions

 Longterm
— Should a new “job” be “initiated,” or should it be held?
— typical of batch systems
— what might cause you to make a “hold” decision?

* Medium term
— Should a running program be temporarily marked as non-
runnable (e.g., swapped out)?
« Short term
— Which thread should be given the CPU next? For how long?
— Which 1/O operation should be sent to the disk next?

— On a multiprocessor:

* should we attempt to coordinate the running of threads from the
same address space in some way?

» should we worry about cache state (processor affinity)?



Scheduling Goals I: Performance

« Many possible metrics / performance goals (which
sometimes conflict)

maximize CPU utilization
maximize throughput (requests completed / s)

minimize average response time (average time from
submission of request to completion of
response)

minimize average waiting time (average time from
submission of request to start of execution)

minimize energy (joules per instruction) subjectto
some constraint (e.g., frames/second)



Scheduling Goals Il: Fairness

* No single, compelling definition of “fair”
— How to measure fairness?
« Equal CPU consumption? (over what time scale?)
— Fair per-user? per-process? per-thread?
— What if one thread is CPU bound and one is IO bound?

« Sometimes the goal is to be unfair:

— Explicitly favor some particular class of requests (priority
system), but...

— avoid starvation (be sure everyone gets at least
some service)



he basic situation

‘ Scheduling:
- Who to assign each resource to

-

N
Schedulable units

Y - When to re-evaluate your
‘ decisions
J\ )
Y
Resources



When to assign?

Pre-emptive vs. non-preemptive schedulers
— Non-preemptive
* once you give somebody the green light, they've got it until they
relinquish it
— an I/O operation
— allocation of memory in a system without swapping
— Preemptive

* you can re-visit a decision

— setting the timer allows you to preempt the CPU from a thread even if it
doesn’t relinquish it voluntarily

— in any modern system, if you mark a program as non-runnable, its memory
resources will eventually be re-allocated to others

« Re-assignment always involves some overhead
— Overhead doesn’t contribute to the goal of any scheduler

We’ll assume “work conserving” policies

— Never leave a resource idle when someone wants it

* Why even mention this? When might it be useful to do something
else?

10



Algorithm #1: FCFS/FIFO

First-come first-served / First-in first-out (FCFS/FIFO)
— schedule in the order that they arrive
— “real-world” scheduling of people in (single) lines
« supermarkets, bank tellers, McD’s, Starbucks ...
— typically non-preemptive
* no context switching at supermarket!

— Jobs treated equally, no starvation
* |In what sense is this “fair’?

Sounds perfect!

— 1n the real world, when does FCFS/FIFO work well?
* even then, what'’s it’s limitation?

— and when does it work badly?

11



FCFS/FIFO example

» time
1 Job A B C

g B C Job A

e Suppose the duration of A is 5, and the durations of B
and C are each 1

— average response time for schedule 1 (assuming A, B, and
C all arrive at about time 0) is (5+6+7)/3=18/3 =6

— average response time for schedule 2 is (1+2+7)/3 = 10/3 =
3.3

— consider also “elongation factor” — a “perceptual” measure:
* Schedule 1: Ais5/5,Bis 6/1, Cis 7/1 (worstis 7, ave is 4.7)
 Schedule 2: Ais7/5,Bis 1/1, Cis 2/1 (worst is 2, ave is 1.5)

12



FCFS/FIFO drawbacks

* Average response time can be lousy
— small requests wait behind big ones

« May lead to poor utilization of other resources

— 1f you send me on my way, | can go keep another resource
busy

— FCFS may result in poor overlap of CPU and I/O activity

13



Algorithm #2: SPT/SJF

« Shortest processing time first / Shortest job first
(SPT/SJF)

— choose the request with the smallest service requirement

* Provably optimal with respect to average response
time

14



SPT/SJF optimality

l St Sg l

In any schedule that is not SPT/SJF, there is some
adjacent pair of requests f and g where the service time
(duration) of f, s;, exceeds that of g, s,

The total contribution to average response time of f and
g Is 2t +2s¢+s,

If you interchange f and g, their total contribution will be
2t +2s+s;, which is smaller because s, < s

If the variability among request durations is zero, how
does FCFS compare to SPT for average response
time?

15



SPT/SJF drawbacks

 It's non-preemptive
— S07?

* ... but there’'s a preemptive version — SRPT (Shortest
Remaining Processing Time first) — that accommodates
arrivals (rather than assuming all requests are Iinitially
available)

e Sounds perfect!
— what about starvation?
— can you know the processing time of a request?
— can you guess/approximate? How?

16



Algorithm #3: RR

Round Robin scheduling (RR)

— ready queue Is treated as a circular FIFO gueue

— each request is given a time slice, called a quantum

* request executes for duration of quantum, or until it blocks
— what signifies the end of a quantum?

* time-division multiplexing (time-slicing)
— great for timesharing
* No starvation

Sounds perfect!

— how is RR an improvement over FCFS?
— how is RR an improvement over SPT?
— how is RR an approximation to SPT?

— what are the warts?

17



RR drawbacks

« What if all jobs are exactly the same length?
— What would the pessimal schedule be?

« What do you set the guantum to be?
— no value is “correct”
« if small, then context switch often, incurring high overhead
« if large, then response time degrades
— treats all jobs equally

 if I run 100 copies of SETI@home, it degrades your service
* how might | fix this?

18



Algorithm #4: Priority

Assign priorities to requests

— choose request with highest priority to run next
* if tie, use another scheduling algorithm to break (e.g., RR)

— to implement SJF (hack), priority = expected length of CPU
burst

Abstractly modeled (and usually implemented) as
multiple “priority queues”

— put a ready request on the queue associated with its priority

Sounds perfect! Uh, er...

19



Priority drawbacks

« How are you going to assign priorities?

e Starvation

— If there is an endless supply of high priority jobs, no low-
priority job will ever run

e Solution: “age” threads over time
— Increase priority as a function of accumulated wait time
— decrease priority as a function of accumulated processing
time
— many ugly heuristics have been explored in this space.
Many. Ugly.

20



Combining algorithms

In practice, any real system uses some sort of hybrid
approach, with elements of FCFS, SPT, RR, and
Priority

Example: multi-level feedback queues (MLFQ)

there is a hierarchy of queues

there is a priority ordering among the queues

new requests enter the highest priority queue

each queue is scheduled RR

gueues have different quanta

requests move between queues based on execution history

In what situations might this approximate SJF?

21



UNIX scheduling

« Canonical scheduler is pretty much MLFQ

— 3-4 classes spanning ~170 priority levels
 timesharing: lowest 60 priorities
» system: middle 40 priorities
 real-time: highest 60 priorities

— priority scheduling across queues, RR within
* thread with highest priority always run first
 threads with same priority scheduled RR

— threads dynamically change priority
* increases over time if thread blocks before end of quantum
» decreases if thread uses entire quantum

« Goals:

— reward interactive behavior over CPU hogs
* interactive jobs typically have short bursts of CPU

22



Windows Scheduler

Canonical scheduler is pretty much MLFQ (like UNIX)
— Seven classes, 31 levels in each class

Time-critical / “real-time”

Highest

Above/normal/below

Lowest

Idle

Thread with highest priority always run first
Threads with same priority scheduled RR

— threads dynamically change priority

Increases over time if thread blocks before end of quantum
Decreases if thread uses entire quantum

Boosts for IO completion

Boosts for focus/foreground window

23



Summary

Scheduling takes place at many levels

It can make a huge difference in performance

— this difference increases with the variability in service
requirements

Multiple goals, sometimes (always?) conflicting

There are many “pure” algorithms, most with some
drawbacks in practice — FCFS, SPT, RR, Priority

Real systems use hybrids. Hack hack hack.

24



