
CSE 451: Operating Systems

Winter 2013

Scheduling

Gary Kimura

2

Scheduling

• In early lectures we talked about context switching

– an interrupt occurs (device completion, timer interrupt)

– a thread causes an exception (a trap or a fault)

• We glossed over the choice of which thread is

chosen to be run next

– “some thread from the ready queue”

• This decision is called scheduling
• scheduling is policy

• context switching is mechanism

• “Scheduling” occurs everywhere

– Threads/Processes, IO, memory, etc.

Mechanism vs Policy

• Policy: a set of ideas or a plan of what to do.

Mechanism: a process, technique, or system for achieving a result.

• Fundamental part of microkernel design
– Change policy and not affect mechanism (and vice versa)

• Security
– Mechanism is authentication and access checks

– Policy is who gets access and when

• Scheduling
– Mechanism is context switch

– Policy is selection of which thread to run next

• Virtual memory
– Mechanism is page replacement

– Policy is which page to replace (local process vs all processes)

• Hansen, Per Brinch (April 1970). "The nucleus of a Multiprogramming

System". Communications of the ACM 13 (4): 238–241.

3

4

Scheduling Goals

• Keep the CPU(s) busy

• Maximize throughput (“requests” per second)

• Minimize latency

– Time between responses

– Time for entire “job”

• Favor some particular class (foreground window,

interactive vs CPU-bound)

• Be fair (no starvation or inversion)

• THESE CONFLICT

5

Classes of Schedulers
• Batch

– Throughput / utilization oriented

– Example: audit inter-bank funds transfers each night, Pixar
rendering

• Interactive
– Response time oriented

– Example: attu

• Real time
– Deadline driven

– Example: embedded systems (cars, airplanes, etc.)

• Parallel
– Speedup driven

– Example: “space-shared” use of a 1000-processor machine for
large simulations

• Others…

We’ll be talking primarily about interactive scheduers

(as does the text).

6

Multiple levels of scheduling decisions

• Long term
– Should a new “job” be “initiated,” or should it be held?

– typical of batch systems

– what might cause you to make a “hold” decision?

• Medium term
– Should a running program be temporarily marked as non-

runnable (e.g., swapped out)?

• Short term
– Which thread should be given the CPU next? For how long?

– Which I/O operation should be sent to the disk next?

– On a multiprocessor:

• should we attempt to coordinate the running of threads from the
same address space in some way?

• should we worry about cache state (processor affinity)?

7

Scheduling Goals I: Performance

• Many possible metrics / performance goals (which

sometimes conflict)

– maximize CPU utilization

– maximize throughput (requests completed / s)

– minimize average response time (average time from

submission of request to completion of

response)

– minimize average waiting time (average time from

submission of request to start of execution)

– minimize energy (joules per instruction) subject to

some constraint (e.g., frames/second)

8

Scheduling Goals II: Fairness

• No single, compelling definition of “fair”

– How to measure fairness?

• Equal CPU consumption? (over what time scale?)

– Fair per-user? per-process? per-thread?

– What if one thread is CPU bound and one is IO bound?

• Sometimes the goal is to be unfair:

– Explicitly favor some particular class of requests (priority

system), but…

– avoid starvation (be sure everyone gets at least

some service)

9

The basic situation

Schedulable units Resources

Scheduling:

- Who to assign each resource to

- When to re-evaluate your

decisions

10

When to assign?
• Pre-emptive vs. non-preemptive schedulers

– Non-preemptive

• once you give somebody the green light, they’ve got it until they
relinquish it

– an I/O operation

– allocation of memory in a system without swapping

– Preemptive

• you can re-visit a decision

– setting the timer allows you to preempt the CPU from a thread even if it
doesn’t relinquish it voluntarily

– in any modern system, if you mark a program as non-runnable, its memory
resources will eventually be re-allocated to others

• Re-assignment always involves some overhead

– Overhead doesn’t contribute to the goal of any scheduler

• We’ll assume “work conserving” policies

– Never leave a resource idle when someone wants it

• Why even mention this? When might it be useful to do something
else?

11

Algorithm #1: FCFS/FIFO

• First-come first-served / First-in first-out (FCFS/FIFO)

– schedule in the order that they arrive

– “real-world” scheduling of people in (single) lines

• supermarkets, bank tellers, McD’s, Starbucks …

– typically non-preemptive

• no context switching at supermarket!

– jobs treated equally, no starvation

• In what sense is this “fair”?

• Sounds perfect!

– in the real world, when does FCFS/FIFO work well?

• even then, what’s it’s limitation?

– and when does it work badly?

12

FCFS/FIFO example

• Suppose the duration of A is 5, and the durations of B
and C are each 1
– average response time for schedule 1 (assuming A, B, and

C all arrive at about time 0) is (5+6+7)/3 = 18/3 = 6

– average response time for schedule 2 is (1+2+7)/3 = 10/3 =
3.3

– consider also “elongation factor” – a “perceptual” measure:

• Schedule 1: A is 5/5, B is 6/1, C is 7/1 (worst is 7, ave is 4.7)

• Schedule 2: A is 7/5, B is 1/1, C is 2/1 (worst is 2, ave is 1.5)

Job A B C

C B Job A

time

1

2

13

• Average response time can be lousy

– small requests wait behind big ones

• May lead to poor utilization of other resources

– if you send me on my way, I can go keep another resource

busy

– FCFS may result in poor overlap of CPU and I/O activity

FCFS/FIFO drawbacks

14

Algorithm #2: SPT/SJF

• Shortest processing time first / Shortest job first

(SPT/SJF)

– choose the request with the smallest service requirement

• Provably optimal with respect to average response

time

15

SPT/SJF optimality

tk

sf sg

tk+sf tk+sf+sg

• In any schedule that is not SPT/SJF, there is some

adjacent pair of requests f and g where the service time

(duration) of f, sf, exceeds that of g, sg

• The total contribution to average response time of f and

g is 2tk+2sf+sg

• If you interchange f and g, their total contribution will be

2tk+2sg+sf, which is smaller because sg < sf

• If the variability among request durations is zero, how

does FCFS compare to SPT for average response

time?

16

• It’s non-preemptive

– So?

• … but there’s a preemptive version – SRPT (Shortest

Remaining Processing Time first) – that accommodates

arrivals (rather than assuming all requests are initially

available)

• Sounds perfect!

– what about starvation?

– can you know the processing time of a request?

– can you guess/approximate? How?

SPT/SJF drawbacks

17

Algorithm #3: RR

• Round Robin scheduling (RR)
– ready queue is treated as a circular FIFO queue

– each request is given a time slice, called a quantum

• request executes for duration of quantum, or until it blocks

– what signifies the end of a quantum?

• time-division multiplexing (time-slicing)

– great for timesharing

• no starvation

• Sounds perfect!
– how is RR an improvement over FCFS?

– how is RR an improvement over SPT?

– how is RR an approximation to SPT?

– what are the warts?

18

RR drawbacks

• What if all jobs are exactly the same length?

– What would the pessimal schedule be?

• What do you set the quantum to be?

– no value is “correct”

• if small, then context switch often, incurring high overhead

• if large, then response time degrades

– treats all jobs equally

• if I run 100 copies of SETI@home, it degrades your service

• how might I fix this?

19

Algorithm #4: Priority

• Assign priorities to requests

– choose request with highest priority to run next

• if tie, use another scheduling algorithm to break (e.g., RR)

– to implement SJF (hack), priority = expected length of CPU

burst

• Abstractly modeled (and usually implemented) as

multiple “priority queues”

– put a ready request on the queue associated with its priority

• Sounds perfect! Uh, er…

20

Priority drawbacks

• How are you going to assign priorities?

• Starvation

– if there is an endless supply of high priority jobs, no low-

priority job will ever run

• Solution: “age” threads over time

– increase priority as a function of accumulated wait time

– decrease priority as a function of accumulated processing

time

– many ugly heuristics have been explored in this space.

Many. Ugly.

21

Combining algorithms

• In practice, any real system uses some sort of hybrid

approach, with elements of FCFS, SPT, RR, and

Priority

• Example: multi-level feedback queues (MLFQ)

– there is a hierarchy of queues

– there is a priority ordering among the queues

– new requests enter the highest priority queue

– each queue is scheduled RR

– queues have different quanta

– requests move between queues based on execution history

– In what situations might this approximate SJF?

22

UNIX scheduling

• Canonical scheduler is pretty much MLFQ
– 3-4 classes spanning ~170 priority levels

• timesharing: lowest 60 priorities

• system: middle 40 priorities

• real-time: highest 60 priorities

– priority scheduling across queues, RR within

• thread with highest priority always run first

• threads with same priority scheduled RR

– threads dynamically change priority

• increases over time if thread blocks before end of quantum

• decreases if thread uses entire quantum

• Goals:
– reward interactive behavior over CPU hogs

• interactive jobs typically have short bursts of CPU

23

Windows Scheduler

• Canonical scheduler is pretty much MLFQ (like UNIX)

– Seven classes, 31 levels in each class

• Time-critical / “real-time”

• Highest

• Above/normal/below

• Lowest

• Idle

• Thread with highest priority always run first

• Threads with same priority scheduled RR

– threads dynamically change priority

• Increases over time if thread blocks before end of quantum

• Decreases if thread uses entire quantum

• Boosts for IO completion

• Boosts for focus/foreground window

24

Summary

• Scheduling takes place at many levels

• It can make a huge difference in performance

– this difference increases with the variability in service

requirements

• Multiple goals, sometimes (always?) conflicting

• There are many “pure” algorithms, most with some

drawbacks in practice – FCFS, SPT, RR, Priority

• Real systems use hybrids. Hack hack hack.

